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Abstract

We study analytic descriptions of conformal immersions of the Riemann sphere
S2 into the CP N−1 sigma model. In particular, an explicit expression for
two-dimensional (2D) surfaces, obtained from the generalized Weierstrass
formula, is given. It is also demonstrated that these surfaces coincide with
those obtained from the Sym–Tafel formula. These two approaches correspond
to parametrizations of one and the same surface in R

N2−1.

PACS numbers: 02.40.Hw, 02.20.Sv, 02.30.Ik

In this communication, we investigate the relations between the CP N−1 sigma model and
the generalized Weierstrass formula for the immersion of 2D surfaces in multi-dimensional
Euclidean spaces. These links have been discussed in [1–3] and are governed by the formula

Xk(ξ, ξ̄ ) = i
∫

γ

(−[∂Pk, Pk] dξ + [∂̄Pk, Pk] dξ̄ ), k = 0, 1, . . . , N − 2, (1)

where Pk are rank-1 orthogonal projectors which satisfy the completely integrable 2D CP N−1

sigma model:

∂[∂̄Pk, Pk] + ∂̄[∂Pk, Pk] = 0, P 2
k = Pk, P

†
k = Pk. (2)

We first demonstrate that for any solution of the CP N−1 sigma model (2) defined on the
Riemann sphere S2 with a finite action functional, the generalized Weierstrass formula for the
immersion of 2D surfaces (1) can be integrated explicitly up to a constant of integration and
expressed in terms of the projectors Pk:

Xk(ξ, ξ̄ ) = −i

⎛
⎝Pk + 2

k−1∑
j=0

Pj

⎞
⎠ , k = 0, 1, . . . , N − 2. (3)

Indeed, if we assume that the CP N−1 sigma model is defined on the sphere S2 with a finite
action functional, then the complete set of regular solutions is known [4, 5]. As a result, one
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gets three classes of solutions, namely, (i) holomorphic (i.e. ∂̄f = 0), (ii) antiholomorphic (i.e.
∂f = 0) and (iii) mixed. The mixed solutions can be determined from either the holomorphic
or the antiholomorphic nonconstant functions by the successive application of the operator P+

[6],

P+ : f ∈ C
N → P+f = ∂f − f

f †∂f

f †f
, (4)

where f is any nonconstant holomorphic function. This allows one to construct mixed
solutions fk = P k

+ f which represent harmonic maps from S2 to the CP N−1 model. Here, the
operator P k

+ is obtained by applying successively k times the operator P+ and P 0
+ = id. Hence,

using (4) for every k � N − 1 we can define a set of rank-1 projectors {P0, P1, . . . , Pk}

Pk := fk ⊗ f
†
k

f
†
k · fk

, k = 0, 1, . . . , N − 1, (5)

which determine conservation laws of the form (2). The first (k = 0) and the last (k = N − 1)

conservation laws are related to the holomorphic and antiholomorphic solutions, respectively,
while the intermediate ones are related to the mixed solutions. Consequently, according to the
Weierstrass procedure we can obtain 2D surfaces for each projector Pk . By a straightforward
calculation one gets [2]

[∂Pk, Pk] = ∂Pk + 2

(
P k

+ f
) ⊗ (

P k−1
+ f

)†∣∣P k−1
+ f

∣∣2 ,

[∂̄Pk, Pk] = −∂̄Pk − 2

(
P k−1

+ f
) ⊗ (

P k
+ f

)†∣∣P k−1
+ f

∣∣2 .

(6)

Hence, for every k � N − 1, the Weierstrass formula for immersion (1) takes the form

dXk = −i

[(
∂Pk + 2

(
P k

+ f
) ⊗ (

P k−1
+ f

)†∣∣P k−1
+ f

∣∣2

)
dξ +

(
∂̄Pk + 2

(
P k−1

+ f
) ⊗ (

P k
+ f

)†∣∣P k−1
+ f

∣∣2

)
dξ̄

]
. (7)

Note that the two surfaces corresponding to k = 1 and k = N − 1 are precisely the same
objects, since one gets antiholomorphic solutions of the model after applying N − 1 times the
operator P+ to the nonconstant holomorphic function f . Hence, there appear at most N − 2
different surfaces as a result of the generalized Weierstrass formula.

The integration of (7) gives us (3) which can be shown as follows. It is immediately seen
that for k = 0 we have X0 = −iP0 and upon differentiation we obtain

dX0 = −i[∂P0 dξ + ∂̄P0 dξ̄ ], (8)

which coincides with (7) for k = 0. For k = 1, we need to show that

∂P0 = (P+f ) ⊗ f †

|f |2 , (9)

which could easily be computed by differentiating P0 and bearing in mind that f is
holomorphic. In order to show that (3) holds for any k we assume that

∂(P0 + P1 + · · · , Pk−2) =
(
P k−1

+ f
) ⊗ (

P k−2
+ f

)†∣∣P k−2
+ f

∣∣2 , (10)
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and then compute ∂Pk−1

∂Pk−1 = ∂

[(
P k−1

+ f
) ⊗ (

P k−1
+ f

)†∣∣P k−1
+ f

∣∣2

]

=
(
P k

+ f
) ⊗ (

P k−1
+ f

)†∣∣P k−1
+ f

∣∣2 −
(
P k−1

+ f
) ⊗ (

P k−2
+ f

)†∣∣P k−2
+ f

∣∣2 , (11)

where we have used the fact that

∂
(
P k−1

+ f
)† = −

∣∣P k−1
+ f

∣∣2∣∣P k−2
+ f

∣∣2

(
P k−2

+ f
)†

, (12)

together with the orthogonality relation(
P k

+ f
)† · (

P l
+f

) = 0, for k �= l. (13)

Thus, we have shown that

∂

⎛
⎝k−1∑

j=0

Pj

⎞
⎠ =

(
P k

+ f
) ⊗ (

P k−1
+ f

)†∣∣P k−1
+ f

∣∣2 , (14)

which indeed justifies (3).
It is interesting to note that this immersion function Xk coincides with the results obtained

in [2], namely the surface for nonholomorphic Veronese-type solutions lives in R
3.

For the CP N−1 sigma model, it may also be of interest to investigate the links between the
generalized Weierstrass formula for the immersion of 2D surfaces in the su(N) algebra and
the approach based on the linear spectral problem for constructing infinitely many surfaces in
multi-dimensional Euclidean spaces R

N2−1 � su(N).
Following the approach proposed by Sym and Tafel in [7–10], in particular using their

formula

Xk(ξ, ξ̄ ) = α(λ)φ−1
k

∂φk

∂λ
, φk ∈ SU(N), k = 0, 1, . . . , N − 2, (15)

for integrable surfaces derived via the Lax pair [11, 12]

∂φk = 2

1 + λ
[∂Pk, Pk]φk, ∂̄φk = 2

1 − λ
[∂̄Pk, Pk]φk, k = 0, 1, . . . , N − 1, (16)

we demonstrate that there exist 2D surfaces with su(N)-valued immersion functions Xk(ξ, ξ̄ )

which are precisely of the form (3). Here, λ is a spectral parameter and the compatibility
conditions for the system (16) coincide with the CP N−1 model equations (2). Furthermore,
α(λ) is some scalar function of λ.

In the purely instantonic case (i.e. holomorphic and antiholomorphic solutions), the
orthogonal projector P has the form

P0 = f ⊗ f †

f † · f
, (17)

which satisfies

[∂P0, P0] = P+f ⊗ f †

f † · f
, [∂̄P0, P0] = −f ⊗ (P+f )†

f † · f
. (18)

Looking for a solution φ0 = φ0(λ) of the linear spectral problem (16) when φ0 tends to 1 as
λ → ∞, we make the Ansatz [6],

φ0 = IN − 2

1 − λ
P0, (19)
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where IN is the N × N identity matrix. The inverse matrix of φ0 is given by

φ−1
0 = IN − 2

1 + λ
P0. (20)

Hence, according to the Sym–Tafel formula (15), the surface associated with the CP N−1

model is given up to an additive su(N)-valued constant by

X0 = 2

1 − λ2
P0. (21)

For the nonholomorphic solutions (i.e. the mixed solutions), we proceed in an analogous
way and find that [6]

φk = IN +
4λ

(1 − λ)2

k−1∑
j=0

Pj − 2

1 − λ
Pk, k = 1, . . . , N − 2, (22)

and the inverse of φk has the form

φ−1
k = IN − 4λ

(1 + λ)2

k−1∑
j=0

Pj − 2

1 + λ
Pk. (23)

The Sym–Tafel formula (15) for the immersion function Xk(ξ, ξ̄ ) of 2D surfaces associated
with the CP N−1 model is given up to an additive su(N)-valued constant by the formula

Xk(ξ, ξ̄ ) = 2

1 − λ2

⎛
⎝Pk + 2

k−1∑
j=0

Pj

⎞
⎠ , k = 0, 1, . . . , N − 2. (24)

This result for the immersion of 2D surfaces in the su(N) Lie algebras coincides with that
obtained from the Weierstrass representation (3) and shows the equivalence between these two
approaches.

To conclude, we give an explicit expression for 2D surfaces, obtained from the generalized
Weierstrass formula, and demonstrate that these surfaces coincide with those obtained from
the Sym–Tafel formula.

Acknowledgments

This work is supported in part by research grants from NSERC of Canada. İY acknowledges
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